
Time-Extended Policies in Multi-Agent
Reinforcement Learning

Kagan Turner Adrian K. Agogino
NASA Ames Research Center

Moffett Field, CA 94035

NASA Ames Research Center

Moffett Field, CA 94035
Mailstop 269-4 Mailstop 269-3

ktumer@mail.arc.nasa.gov adrian@email.arc.nasa.gov

Abstract

Reinforcement learning methods perform well in ”any
domains where a single agent needs to take a sequence of
actions to perform a task. These methods use sequences
of single-time-step rewards to create a policy that tries to
maximize a time-extended utility, which is a (possibly dis-
counted) sum of these rewards. In this paper we build on our
previous work showing how these methods can be extended
to a multi-agenr environment where each agent creates its
own policy that works towards maximizing a time-extended
global utility over all agents’ actions. We show improved
methods for creating time-extended utilities for the agents
that are both “aligned” with the global utility and “learn-
able." We then show how to crate single-time-step rewards
Mhile avoiding the pi fall of having rewards aligned with the
global reward leading to utilities not aligned with the global
utility. Finally, we apply these rewardfunctions to the multi-
agent Gridworld problem. U’e explicitly quantify a utility’s
leamability and alignment, and show that reinforcement
learning agents using the prescribed reward functions suc-
cessfully tradeoff learnability and alignment. As a result
they outpelform both global (e.g., “team games”) and lo-
cal (e.g., “perfectly learnable ”) reinforcement learning so-
lutions by as much as an order of magnitude.

1. Introduction

There are many problems which can only be properjy ad-
dressed by having a set of autonomous agents act indepen-
dently and have their joint sequence of actions maximize a
pre-set global utility function. Examples of such problems
include control of a constellation of satellites, construc-
tion of distributed algorithms, routing over a data network,
and control of a collection of planetary exploration vehi-
cles- (e.g., rovers on Mars, or submersibles under Europa’s

ice caps). In such problems. agents have to solve two credit
assignment problems at once. First, an agent has to figure
out how an action taken now affects future rewards. This
temporal credit assignment problem has been dealt with ex-
tensively in the single agent context; there are many rein-
forcement learning systems [lo], (e.g., Q-learners [131) that
have successfully been applied to real world problems [11.
Second. an agent has to be able to choose actions that will,
when combined with the actions of all other agents, lead to
good values of the global utility. This structural credit as-
signment problem is difficult and is usually handled by hav-
ing either each agent receiving the global utility as their pri-
vate utility (e.g., “team” games [2]), or of imposing exter-
nal mechanisms (e.g.. contracts, auctions) that encourage
the agents to work together [4, 81. This paper addresses
the smctural credit assignment problem by designing pri-
vate utilities for the agents that are both aligned with the
global utility, and easier for the agents to learn to maximize.
The agents will then use Q-learners to address the temporal
credit assignment problem.

In earlier work, we discussed how time-extended utilities
can be applied in a multi-agent system [111. In this work, we
extend that work by providing rewards whose undiscounted
sums approximate those utilities, by explicitly computing
the degree of alignedness between agent utilities and the
global utility, and by computing the signal-to-noise proper-
ties of the derived utilities. We also provide a new utility
that significantly outperforms the previous ones, especially
in domains with hundreds of agents. In Section 2, we pro-
vide a summary how to make utilities that resolve the struc-
tural credit assignment problem. In Section 3 we discuss
how to devise rewards that deal with the structural credit
assignment problem for a single time step, while avoiding
a common difficulty where using rewards aligned with the
global reward leads to utilities not aligned with the global
utility. In Section 4, we describe token collection in the
Gridworld problem domain and develop agents’ private util-
ities that allow agents using reinforcement learning to re-

.

solve both credit assignment problems simultaneously. In
Section 5. we present simulation results that show that the
utilities presented here possess high alignedness and learn-
ability as compared to traditional approaches, and lead to
solutions that significantly outperform those traditional ap-
proaches.

2. Factored and Learnable Utilities

In this work, we focus on multi-agent systems that aim
to maximize a global utility function, G (z) , which is a func-
tion of the joint move of all agents in the system, z . Instead
of maximizing G (z) directly, each agent, q, tries to maxi-
mize its private utility function gr, (z) . Our goal is to create
private utility functions that will cause the multi-agent sys-
tem to produce high values of G(z) . Note that in many sys-
tems, an individual agent q will only influence some of the
components of z. We will use the notation z;, to refer to the
parts of z that are dependent on the actions of q. The vec-
tor zr, is the same size as z and is equal to z except that all
the components that do not depend on q are set to zero. Note
that this subscripted vector notation is not the same as a tra-
ditional index to a vector since z and zr, have the same num-
ber of components.

There are two properties that are crucial to producing
systems in which agents acting to optimize their own pri-
vate utilities will also optimize the provided global utility.
The first of these concerns “aligning” the private utilities of
the agents with the global utility. Formally, a system is fully
factored when for each agent 7 :

gr,(z) > g,,(z’) ++ G(z) > G(z’)
V13,z‘ s.t. z - zr, = 2’ - z:, .

Intuitively, for all pairs of states z and z’ that differ only for
agent q, a change in 7’s state that increases its private util-
ity cannot decrease the global utility. As a trivial example,
any system in which all the private utility functions equal
G is fully factored [2]. In general though, one is more con-
cerned with the degree of factoredness for a given utility
function than for full factoredness. To address that concern,
we define the degree of factoredness for a given utility func-
tion g,, as:

where again, z’ denotes all states for which z - z,, = z’ - zk
and u[z] is the unit step function, equal to 1 if z > 0.

The second property, called learnability, measures the
dependence of a utility on the actions of a particular agent
as opposed to all the other agents. Formally we can quan-
tify the learnability of utility gr,, in the vicinity of z as the
expected value over a new set of actions, z’. of Sa’s change

in magnitude caused by the change in v’s action divided by
gV’s change in magnitude caused by the change in actions
of all the other agents:

where E[.] is the expectation operator. So at a given state
z , the higher the learnability, the more Sa(”) depends on
the move of agent q, i.e., the better the associated signal-to-
noise ratio for q. Intuitively then, higher learnability means
it is easier for q to achieve a large values of its utility. Note
in the factored team-game example above, the utility of each
agent depended on the actions of all the agents. Such sys-
tems often suffer from low signal-to-noise, a problem that
get progressively worse as the size of the system grows.

2.1. Designing Agent Utilities

Though the need for designing factored and learnable
utilities for the agents is highlighted above, in general it is
not possible for the utilities both to be factored and to have
infinite learnability (Le., no dependence of any gr, on any
agent other than q) for all of its agents [15]. However, con-
sider a family of utility functions, called Wonderful Life
(WL) utility functions. For each agent 7, the WL utility is
given by:

(3)

where c is an arbitrary vector. For any choice of c, WL utili-
ties have been shown to be factored [151. Furthermore, it can
be provtxi that in many circumstances, especiiilly in ldrge
problems, X,,,WLLT(Z) 2 A q , ~ (z) , i.e., WLU has higher
learnability than does a team game [15]. This is mainly
due to the second term of the X U , which removes part of
the effect of other agents (i.e., noise) from 7’s utility (how
much noise is removed depends on the domain). Though all
WL utilities are factored regardless of the choice of c, the
selection of c affects their learnability. Therefore, in prac-
tice matching the proper value of c to the domain greatly
improves the performance of the system [15]. This paper
will address how to handle the setting of c in three sepa-
rate ways: (1) setting c to the zero vector, (2) setting c to the
expected value of z,,, and (3) taking the expected value of
WLU over c.

The first method is to simply set c to the zero vector al-
lowing the WLU to be expressed as:

WLU; = G (t) - G(z - z,, + C)

WLli,”=’ = G (z) - G(z - zr,) (4)

In many circumstances this method is equivalent to remov-
ing that agent from the system, hence the name of this util-
ity function. For such a c, WLU is closely related to the eco-
nomics technique of “endogenizing a player’s (agent’s) ex-
ternalities” and Vickrey tolls [121. WLU also may appear to

.

have some similarities to Groves' mechanism [3] in mecha-
nism design, though Groves' mechanism actually produces
a team game by subtracting out a player's benefit already re-
ceived from public goods.

The second method for setting c is to set it to the ex-
pected value of z, instead of the zero vector. In this case the
WLU can be expressed as:

-
WLU,C'"? = G(z) - G(z - 2, + q) (5)

where 7 = E[z,Iz-,]) gives the expected value for the ac-
tion of z1 given the actions of all other agents. This choice
of c usually results in higher learnability than the zero vec-
tor [15]. It is also often easy to compute and is still use-
ful even if the expectation can only be approximated. Note
that in addition to offering better learnability, the WLU has
an additional advantage over the global utility: in many in-
stances, its computation only requires partial (e.g., local) in-
formation. Indeed, either the information required for the
computation of the global utility, or the global utility it-
self has to be broadcast which can put a heavy communica-
tion burden on the system, not to mention create a central-
ized, single point of failure. However WLU generally needs
much less information because many components' impact
cancel out (e.g., they are unchanged in both the first and sec-
ond terms of the WLU) and therefore never need to be ob-
served by an agent In Section 4.2 we show this to be the
case for the Gridworld problem.

The third method for addressing how to set c is to take
the expected value of the WLU over the values of c that are
possijle actions of q. We call this utility the Expected W L
Utility (EWU):

E W U , = Ez;[WLU;="'(z)/z - zv]
=

=
EZ;[G(z) - G ((z - 2, + z ~) I z - z,]
G(z) - E,;[G(z - Z, f z ~) I z - z,] . (6)

Instead of setting c to a fixed value, the EWU integates over
all values of c that equal an action of 7 (denoted z;)- This
computation theoretically results in higher learnability than
the WL utility [151, though it is generally difficult to com-
pute and often needs to be approximated.

3. Time-Extended Rewards

Often we face the task of creating a policy to determine
a sequence of actions, which requires us to break down
a time-extended utility into single-time-step rewards. Con-
sider a system, where the global utility, G. is a function of a
sequence of actions, A. of all the agents. (A is an q by t ma-
trix of actions. We will use A, to represent the actions of
agent 7 across all time, At to represent the actions of all
agents at time t, and A,, t to represent the actions of agent
7 at time t All such matrices have the same dimensionality

as -4. where the non-used elements are set to zero.) Also as-
sume that the global utility is an undiscounted sum of global
rewards (GRs): G(=l) = Et GRt(A). Since the global util-
ity is a sum of rewards, we can attempt to maximize it by
having each agent use a Sarsa learner', receiving a global
reward at every time step. However, as discussed earlier,
this approach (i.e., team game) suffers fiom poor learnabil-
ity. particularly if there are many agents in the system.

Instead we want to use a WLU-based reward, and the di-
rect approach, which we call the naive WLR is given by:

where G,t is 7's a fixed action for time step t. This reward is
factored at time step t , since 7's actions at time step t cannot
affect the value of the second term. However this reward is
rwt factored through time (i.e., the sum of these rewards fac-
tored with GR does not produce a utility factored with the
global utility). To illustrate this problem, consider a simple
two-time-step, multi-agent problem where each agent can
take one of two actions at each time step. For an agent 7, we
can draw a reward graph showing the outcome of its actions
given the actions of the other agents. Potentially agent 7
could have a different reward graph for each possible com-
bination of actions of all of the other agents. Consider one
of these reward graphs as illustrated in Figure 1 (top), show-
ing how the global reward values depend on 7's actions (this
graph actually comes for a Gridworld example problem dis-
cussed later in Section 4 though the problem details are not
needed for the analysis here).

Figure 1 shows that if agent q moves left on the first time
step, the global reward will b: ten on the first time step and
zero on the second time step. If the agent moves right on the
first time step the global reward will be zero for the first time
step, but it will be either ten or fifteen on the second time
step depending on whether its second action is left or right
respectively. When the actions of all of the other agents are
held constant, if agent 7 is using a Sarsa learner with the
global reward, it should form the policy of moving right for
both time steps, maximizing the global utility: the sum of
global rewards. However consider the values produced by
the NWLR, shown in Figure 1 (bottom). If G , ~ represents
the go-right action, then the NWLR will equal GR, for the
first time step, but will be different if it takes the go-right
action on the first time step. Instead of ten or fifteen, the
NWLR will evaluate to negative five or zero on the second
time step. If the agent is using a Sarsa learner, we would ex-
pect the agent to take the left action at the first time step,
which is sub-optimal with respect to the global utility. This
mismatch of factoredness between rewards and utilities can
be elucidated by focusing on the update rule for a simple

1 A Sarsa learner is used in this example for its simplicity. In the exper-
iments performed in the results section, Q-learners are used instead.

Figure 1. Agent 17 makes a choice of two ac-
tions for each of the two time steps. Val-
ues on the top graph represent the global re-
wards. Curved arrows show the values that
are subtracted out to form the WL reward
shown on the bottom graph. The NWLR is
factored for a single time step since the
NWLR and the GR result in the same order-
ing of values for each pair of actions at each
time step. However, this form of WL reward
is not factored through time since the NWLR
and the GR give different orderings for the
sum of rewards (Le., the resulting utilities are
not factored).

(deterministic and undiscounted) Sarsa learner:

Q(st , at) = Rt + & (S t + l , at+d (8)
where the predicted sum of future rewards after taking ac-
tion at in state st is calculated by adding the immediate re-
wards to the predicted sum of rewards for the next action.
Using the NWLR?it (A) in our example, the Sarsa update
rule becomes:

Q(St(A), a t) = G R t (4 - GRt(A - A,$ + %,t)

+Q(St+l(A); %+I) (9)

The problem arises in st+l(A) being dependent on the cur-
rent action, at. That is not a problem in itself, but consider
what Q(st+l(A), at+l) is approximating:

G&J(A) - G&(A - A,$ + %,t) ‘ (10)
t‘>t t’>t

The second sum is dependent on the current action at, caus-
ing the policy not to be factored. Even though the immedi-

Figure 2. Agent 17 makes a choice of two ac-
tions for each of the two time steps. Val-
ues on the top graph represent the global re-
wards. Curved arrows show the values that
are subtracted out to form the WL reward
shown on the bottom graph. This form of WL
reward is factored through time as the WLR
and GR give the same ordering for the sum
of rewards resulting form a sequence of ac-
tions.

ate reward is factored, the d u e s in the Q-tables are not and
the agents form a policy that is not aligned with the global
utility.

The way to address this problem is to subtract out the full
sequence of actions, 24,, instead of the single action, A,,t,
in the second term of the WLR and replace it with a con-
stant full sequence of actions:

WLRG:t(A) = GRt(A) - GRt(A - A, + G) (11)

where c+, is a full sequence of actions. Thls version of WLR
therefore differs kom the previous version in that:

1. The subtracted single action A,,t is replaced with the

2. The constant action %,t is replaced with a constant se-

sequence of actions A,

quence of actions G,

For the example problem the values produced by this util-
ity are shown in Figure 2 (bottom). In this case, c is set to
the “right-right” sequence of actions (i.e., 15 is subtracted
from GR). Note that now the sum of rewards for both GR
and WLR have the same ordering, that is the two utilities
are factored. With this utility an agent using a Sarsa learner

forms the correct policy. In general though, this utility may
be difficult to compute. It requires predicting the outcome of
a sequence of rewards. In Section 4 we alleviate this prob-
lem by defining the a virtual “null” action for agents (e.g..
c, is set to the zero vector), representing the agent being re-
moved from the system.

4. Multi-agent Gridworld Problem

The single-agent Gridworld Problem [lo] is a Markov
Decision Process that is well known in the reinforcement
learning community. In this problem, an agent navigates
about a two-dimensional n x n grid, by moving a distance
of one ,gid square in one of four directions: up, down, right
or right The state of an agent is the grid square it is on,
and the reward an agent receives depends on the -gid square
it moves to. This paper uses an episodic, finite-horizon [5]
model of the problem. In this model the agent starts at a
start-state and then moves for a fixed number of time steps.
At the beginning of each episode, the agent is returned to
the start state. Reinforcement learners that maximize a sum
of rewards, such as Q-learning, can be used in this prob-
lem.

To test our multi-agent utilities, we will use a multi-agent
version of this well known Gridworld Problem. In the multi-
agent version there are multiple agents navigating the -gid
simultaneously interacting with each others’ rewards. This
interaction is modeled through the use of tokens. Each token
has a value between zero and one, and each grid square can
have at most one token. When an agent moves into a g i d
square, the system receives a reward for the value of the to-
ken. The agent then removes the token so that a reward will
no longer be received if it re-enters the same square or when
another agent enters the grid square. If two agents move into
the same square at the same time, it is only picked up once.
The global objective of the Multi-agent Gridworld Problem
is to collect the highest aggregated value of tokens in a fixed
number of time steps.

We chose this problem because it is a standard problem
in reinforcement learning research, and provides a clean
testbed to compare the various utility functions. In the
multi-agent version, the agent interactions provide a crit-
ical study of coordination and interference, as the agents
have the potential to work at cross-purposes. Each agent at-
tempting to maximize the value of the tokens it collects,
can drive the global utility to severely suboptimal values.
As such, the design of the private utilities is crucial in this
problem, and we address this issue below.

4.1. WLU and EWU for Gridworld

0 (Oz>y giving the value of the token at location (x,y)),
and Lo, the initial locations of the agents. The globaI utility
G(A: 0, Lo) returns the value of the tokens received from a
sequence of actions:

G(A, 0: Lo) = @z,yL.y(A: Lo). (12)
Z , Y

where I,:,(A,Lo) is an indicator function return-
ing one if any agent entered the location (s l y) and zero
otherwise. The pseudo-code for IZ,,(A,Lo) can be ex-
pressed as follows:

&,y(A, Lo) :
f o r each 77

s + Lo
f o r each t

if s,, = (5 , ~) r e t u r n 1
s + b(s,A,)

r e t u r n 0

Since 8 and Lo are always constant for a single ex-
periment, 8 and LO will be omitted from any function
parameter in the remainder of this paper to simplify nota-
tion (i.e., instead of using z = 0, Lo, A, we will simply use
z z A).

Based on the definition and global utility given above,
the EWU (given in Equation 6) becomes:

EWU,,(A) = G(A) - z p ~ ; G (Z 1 - A, 4- -4;)
A ;

(13)

where the -4;s are the possible action sequences agent 7 can
take. The second term in the equation is the expected value
of the global utility over all the possible sequences of ac-
tions for agent 7.

Now, let us formulate the WL utilities for this domain.
First, setting c7, to the zero matrix, we obtain WL utility
where the agent is removed from the system?

WLU,(A) = G(A) - G(-4 - A, + e,,)
= G(A) - G(A - AT). (14)

This utility returns an agent’s contribution to the global util-
ity. Note, this utility differs from one where the values of
the tokens present in the locations visited by the agent are
summed (i.e., a utility based on an agent’s immediate lo-
cal effects). WLUo gives the value of the tokens in loca-
tions not visited by other agents, i.e., the values of token
that would not have been picked up had agent not been
in the system. This provides the marginal impact for that
agent.

In this problem, the global utility is a function of the
agents actions, A, the value of the tokens at each location,

2 From here onward, we will refer to WLUC=O as WLCa to simplify
the notation.

Next, let us define the WL utility resulting from q e n t
taking the virtual average action, where it partially takes all
possible actions3:

W L U ~ (Z) = G(A) - G (A - A, + A?") (15)

where A?" is the average sequence of actions. Because in
practice Aye can be hard to define. we discuss an alterna-
tive in the next section.

4.2. WL and EW Rewards for Gridworld

WLU and EWU are based on the performance over a
full episode, and therefore are problematic to use directly in
practice4. We therefore introduce single time step rewards
whose undiscounted sums form these utilities. First, let us
decompose an arbitrary utility U in the following manner:

(16)

where = At, is the action matrix representing
all of the actions taken before time t. Now, it is possible to
represent the single time step reward Rt by:

&(A) = U(A<t+l) - U(A<t) (17)

Now we can generate the four single-time-step reward
versions of the four utilities5:

GRt(A) = G(-Gt+d - G(&t) (18)

- CPa;GRt(A - -4, + A;)(19)

WLR;,,(z) = GRt(A) - GRt(A - AV) (20)

EWR,~t(A) = GR(A)

-4 ;

WLR;,,(z) = GRt(A)
-GRt(A - A,, + A?") (21)

While we would like to use EWR and WLR" precisely
as formulated above, these rewards tend to be difficult to
compute exactly. Since the set of action sequences grows
exponentially with t, it is computational expensive to sum
over all possible action sequences as needed to compute
EWR and to compute the matrix Aye used in WLR". In-
stead we will approximate E W R and WLR", using only
the previous action instead of the entire sequence of actions:

EWRV,t(-4) = GR(A)

- PA' r) > t G&(A - + AL.t)

WLR;,,(z) = GRt(A) - GRt(A - A,,t +A;?)
AhJ

3

4

To simplify notation in what follows we referto WLCIC'A;Vc (utility
obtained by setting c to the average action sequence of 17 as WLUa.
Providing a reward of zero in ail but the final step where the full utility
is given as a reward is an undesirable solution because it makes filling
the Q-table an impossibly difficult task.
In the actual implementation there are some tie breaking rules if more
than one agent goes into the same square at the same time.

5

where is the average single action. This is a virtual ac-
tion defined as going in all four directions at once. Note
that these utilities are no longer factored through time since
only 77's action for a single time step is subtracted out. How-
ever we will show in Section 5 that in practice these utilities
are very close to being factored and are very effective.

Directly computing the utilities represented in Equa-
tions 18-21 requires knowledge about the state of the entire
system. However, to compute W-LRO an agent only needs
to observe all the squares to which it has been. All the other
terms cancel out. In a domain such as Mars Rovers this
could be done by laying a trail of sensors along its path. The
utilities EWR and WLR" have similar requirements ex-
cept they have to observe a few squares around every square
they have been, Again in the Mars Rover domain this could
be done by laying a trail of sensors that have a small ra-
dius of observation. The only utility that truly requires full
observability is the team game utility, G.

5. Experimental Results

To evaluate the effectiveness of the collective-based ap-
proach in the Multi-agent Gridworld, we conducted exper-
iments in token worlds with 10, 85 and 200 agents. The
token worlds had a similar distribution of tokens, where
the "highly valued" tokens were concentrated in one cor-
ner. with a second concentration near the center where the
rovers were initially located. For an nzn grid the value of a
token in position (z, y) was (x + y)/n - 1 when (z + y) / n
was greater than 0.4. In addition the tokens at locations
(m/2, m/2 - 1) and (m/2 + 1, m/2 - 1) were set to 0.8.
All other tokens had a value of zero. Agents start an episode
at location (m/2, m/2). To keep the approximate difficulty
of the token collection problem constant with respect to the
number of agents, the ratio of the number of grid squares
to number of agents was held constant. The size of the to-
ken world was 10x10 for ten rovers, 29x29 for 85 agents
(e.g., 8.4 times larger than for 10 agents), and 44x44 for
200 agents (e.g., 20 times larger than for 10 agents). In all
the experiments, the agents used Q-learners to learn their
policy (we expect a Sarsa learner to produce similar re-
sults). Each run consisted of 1000 episodes of 10, 29 and
44 steps respectively for the the 10, 85 and 200 agent sys-
tems. There were 100 runs per each 10 and 85 agent experi-
ment (e.g., for 10 agents, we had 100 runs of 1000 episodes
of 10 time steps) and 24 runs per each 200 agent experi-
ment. The discount rate was 0.95 and the learning rate was
set to 1/(1+0.0002rvS,,) where is the number of times
an agent took action a in state s. Given the Q-values, the ac-
tion were chosen with Boltzmann selector with k = 50 and
tables were initially set to zero as traditionally done to trade-
off exploration vs. exploitation [lo]. Table 1 shows the re-
sults of a ten rover system for the five utilities.

Agent
Utitlity

L Ua
WLUO
E W U
G
PLU
(Random

Normalized Deviation Convergence
World Utility in Mean Time

0.998 0.001 40
0.993 0.002 70
0.97 0.002 110
0.37 0.02 770
0.29 0.02 10
0.34 0.1)

Table 1. Gridworld Performance for IO Agents

Agent Factoredness Learnability
Utility (in 52)
W L U a 99.0 5 0.078 1.78 i 0.03
W L U o 100.0 4= 0.0 0.96 i 0.03
E W U 99.3 i 0.088 1.15 i 0.03
G 100.0 i 0.0 0.2 i 0.0026
PLU 86.2 ,I 0.66 m

Table 2. Factoredness and Learnability Esti-
mates for 10 Agents

The performance of five private utility functions was
tested: (i) the Perfectly Learnable Utility (PLU), where each
agent receives the weighted total of the tokens that it alone
collected. It is the natural extension of the single agent prob-
lem, and represents the optimal utility in the single rover do-
main. The PLU is a function of the moves of only a single
agent and therefore as infinite learnability, but is not gener-
ally factored. (ii) the Team Game (TG) utility, where each
agent received the full global utility. It is the opposite ex-
treme of the PLU since it is fully factored, but has very low
learnability. (iii) the WLo utility, where cis set to zero. Intu-
itively, this utility computes the contribution an agent makes
to the token collection, by looking at the difference in the
total token collection with and without thar agent. (iv) the
WL" utility, where c is set to AUve, representing the dif-
ference between the utility value resulting from an agent's
actual action and its "smeared" action; and (v) the EWU,
where the agent's contribution is computed as the differ-
ence between the action it took and its expected action.

The performance measure in these figures is "normal-
ized" global utility given by G (A) This normalized

utility provides the kaction of token values that was col-
lected by the agents (a value of one means all available to-
kens were collected). The deviation in the mean gives the

where N is the number of runs (N = 100 for this ex-
./?
periment). The convergence times is the time taken to reach
.9(U,,, - cTrand) + Urand. The results show that PLU pro-
duced poor results, results that were indeed worse than ran-
dom actions. This is caused by all agents aiming to acquire
the most valuable tokens, and congregating towards the cor-
ner and center of the world where such tokens are located.
In this case agents using the PLU competed, rather than co-
operated with one another. Note however, that the conver-
gence time was extremely rapid. The agents using TG fared
marginally better, but their learning was slow. This system
was plagued by the signal-to-noise problem associated with
each agent receiving the full global reward for each indi-
vidual action they took. In contrast, agents using WLo and
EWU performed very well, and agents using WL" per-
formed almost optimally. In each of these three cases, the

c,,8,.-

reinforcement signal the agents received was both factored
and showed how their actions affected the global reward
more clearly than did the TG reinforcement signal.

We can gain some insight into these results by calculat-
ing the learnability and factoredness of these utilities, using
Monte-Carlo methods. Factoredness is computed by taking
the action. A,,t for an agent q at a random time t and replac-
ing it with a random action Ab,t. If n samples are taken, an
estimate for the degree of factoredness introduced in Equa-
tion l for a private utility g is given by:

where u is the unit step function (output of 1 if argument
is strictly greater than zero), Rb., is the ith random action
for agent 7, and n d is the number of times the random ac-
tion caused a change in G. Similarly iearnability can be ap-
proximated as:

- 1 //U(A) - U (A - -4,,t + Rh)II
n JIU(A) - U (R z - Rb,t + A;) / /

where and R' - RQ,, is the ith random action for all agents
ther than q.

Table 2 shows the factoredness and learnability estimates
respectively, along with the differences in the mean for
each. The results indicate that all of the utilities except for
PLU are either perfectly factored or very close to being fac-
tored. Instead the improved performance of WLU" can be
attributed to it having higher learnability than either EWU
or WLVO, a result consistent with the convergence times
reported in table 1.

Tables 3 and 4 show the experimental results for the
larger systems (85 and 200 agents). The results are qual-
itatively similar to those with 10 agents, though the dif-
ferences become more pronounced. The team game agents
have a harder time learning, and perform randomly for the
200 agent case. Furthermore, the performance of WLa is
now clearly superior to that of WL0, showing that using the

2= 1

c

Apent Normalized Deviation
Utility World Utility in Mean
WLU‘ 0.84 0.007
WLU’ 0.71 0.008
EWU 0.73 0.009
G 0.06 0.006
PLU 0.018 0.0006
(Random 0.058 0.02)

Table 3. Gridworld Performance for 85 Agents

Agent
Utility
WLU‘
WLUO
EWU
G
PLU
(Random

Normalized
World Utility
0.57
0.38
0.41
0.025
0.007
0.02

Deviation
in Mean
0.01
0.01
0.01
0.005
0.0002
0.02)

Table 4. Gridworld Performance for 200 Agents

degree of freedom of being able to use an arbitrary e,, pro-
vides significant improvements over solutions aimed at “en-
dogenizing externalities” (WLO).

6. Discussion

In this article w e extended previous work on design-
ing distributed reinforcement learning algorithms for multi-
agent systems. We decomposed agent utility functions re-
quiring sequences of actions into single step rewards that
conserve the salient features of the agent utilities. Further-
more, we exposed the dangers of some single step rewards
aligned with a global reward leading to utilities which are
not aligned with the global utility. Our analysis shows the
simple steps required to overcome this problem. Our exper-
imental results were conducted in a gridworld scenario, a
problem related to many real world problems including ex-
ploration vehicles trying to maximize aggregate scientific
data collection (e.g., rovers on the surface of Mars). Further-
more, we computed the factoredness and learnability for the
different agent utility functions using Monte-Carlo meth-
ods. These results shed light on the performance and con-
vergence times of the different utilities and validated the as-
sumptions made in the derivation of the utilities.

The results demonstrate that agent utilities designed to
have both high factoredness and high learnability outper-
form both “perfectly learnable” utilities and fully factored
utilities based on “team games” (e.g., using global utility).

Even the simplest of our utilities, Who, showed marked im-
provement over such utilities, while W L ” showed further
improvements. The factoredness and learnability estimates
showed that WL-based utilities had high factoredness and
high learnability, thus using the best features of both team
games and PLUS. Our current research consists of extend-
ing these results to domains with partial observability.

References

[I] J. A. Boyan and M. Littman. Packet routing in dynamically
changing networks: A reinforcement learning approach. In
Advances in Neural Information Processing Systems - 6,
pages 671-678. Morgan Kaufman, 1994.

[2] R. H. Crites and A. G. Barto. Improving elevator perfor-
mance using reinforcement learning. In Touretzky, Mozer,
and Hasselmo, eds, Advances in Neural Information Pro-
cessing Systems - 8, pages 1017-1023. MIT Press, 1996.

[3] T. Groves. Incentives in teams. Econometrica, 41:617-631,
1973.

[4] J. Hu and M. P. Wellman. Multiagent reinforcement learn-
ing: Theoretical framework and an algorithm. In Proceed-
ings of the Fifteenth International Conference on Machine
Learning, pages 242-250, June 1998.

[SI L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A survey. Journal of Artzjicial Intelli-
gence Research, 4:237-285, 1996.

[6] M. Kearns and D. Koller. Efficient reinforcement learning in
factored MDPs. In Proceedings of the 16th Intl. Joint Con$
on Artijicial Intelligence, pages 740-747, 1999.

[7] M. L. Littman. Markov games as a framework for multi-
agent reinforcemcnt learning. In Proccedings of the 11th
International Conference cn Machin.? Learning, pages 157-
163, 1994.

[SI T. Sandholrn and R. Crites. Multiagent reinforcement learn-
ing in the iterated prisoner’s dilemma. Biosystems, 37:147-.
166,1995.

[9] P. Stone and M. Veloso. Multiagent systems: A survey from
a machine learning perspective. Autonomous Robots, 8(3),
2000.

[IO] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[111 K. Turner, A. Agogino, and D. Wolpert. Learning sequences
of actions in collectives of autonomous agents. In Proc. of
the First Intl. Joint Con. on Autonomous Agents and Multi-
Agent Systems, pages 378-385, Bologna, Italy, July 2002.

[121 W. Vickrey. Counterspeculation, auctions and competitive
seded tenders. J o u m l of Finance, 163-37, 1961.

[13] C. Watkins and P. Dayan. Q-learning. Machine Learning,

[I41 D. Wolpert and J. Lawson. Designing agent collectives for
systems with markovian dynamics. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, BoloFa, Italy, July 2002.

Optimal payoff functions
for members of collectives. Advances in CompZa Systems,
4(2/3):265-279,2001.

8(3/4):279-292, 1992.

[15] D. H. Wolpert and K. Tumer.
‘

